Electrochemical Technologies in Wastewater Treatment

Guohua CHEN

Department of Chemical and Biomolecular Engineering
The Hong Kong University of Science and Technology
Eco Asia Conference (29 / 10 / 2008)
Water Pollution Impacts
Wastewater Treatment Techniques

Coagulation
Sedimentation
Flotation
Filtration

⇒ to remove particles

Biological processes
Advanced oxidation
Adsorption
Membrane processes

⇒ to remove organic compounds
Electricity Is Not a Stranger
Electrochemical methods

- Electrodeposition
- Electrocoagulation
- Electroflotation
- Electrooxidation
- Electrodisinfection
- Electroreduction

⇒ High efficiency
⇒ Easy operation
⇒ Compact facilities
Electrodeposition for heavy metal recovery

\[Mn^{n+} + ne \rightarrow M \]
Electrocoagulation

- Generating coagulant electrically

 \[
 \text{Al} - 3e \rightarrow \text{Al}^{3+} \\
 \text{Fe} - 2e \rightarrow \text{Fe}^{2+}
 \]

- Sludge floated by hydrogen gas

 \[
 2\text{H}_2\text{O} + 2e \rightarrow \text{H}_2 + 2\text{OH}^-
 \]
Applications of Electrocoagulation

- Suspended solids
- Oil & grease

Facilities Required

- Al or Fe plates as electrodes
- DC power supply
- Pumping facility
Electrocoagulation units

(a) Horizontal flow

(b) Vertical flow
The aluminum demand and power consumption for removing pollutants from water

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Unit quantity</th>
<th>Preliminary purification</th>
<th>Purification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Al(^{3+}), mg</td>
<td>E, W·h/m(^3)</td>
</tr>
<tr>
<td>Turbidity</td>
<td>1 mg</td>
<td>0.04 – 0.06</td>
<td>5 - 10</td>
</tr>
<tr>
<td>Colour</td>
<td>1 unit</td>
<td>0.04 – 0.1</td>
<td>10 - 40</td>
</tr>
<tr>
<td>Silicates</td>
<td>1 mg/SiO(_2)</td>
<td>0.2 – 0.3</td>
<td>20 - 60</td>
</tr>
<tr>
<td>Irons</td>
<td>1 mg Fe</td>
<td>0.3 – 0.4</td>
<td>30 - 80</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1 mg O(_2)</td>
<td>0.5 - 1</td>
<td>40 - 200</td>
</tr>
<tr>
<td>Algae</td>
<td>1000</td>
<td>0.006 – 0.025</td>
<td>5 -10</td>
</tr>
<tr>
<td>Bacteria</td>
<td>1000</td>
<td>0.01 – 0.04</td>
<td>5 -20</td>
</tr>
</tbody>
</table>
Electroflotation

• Generating gas bubbles electrically

\[2\text{H}_2\text{O} - 4e \rightarrow \text{O}_2 + 4\text{H}^+ \]

\[2\text{H}_2\text{O} + 2e \rightarrow \text{H}_2 + 2\text{OH}^- \]

• Gas bubbles attaching to flocs

• Floating to top of water surface
Economic parameters in treating oily effluents

<table>
<thead>
<tr>
<th></th>
<th>EF</th>
<th>DAF</th>
<th>IF</th>
<th>Settling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble size, µm</td>
<td>1 - 30</td>
<td>50 - 100</td>
<td>0.5 – 2</td>
<td></td>
</tr>
<tr>
<td>Specific electricity consumption, W/m³</td>
<td>30 - 50</td>
<td>50 - 60</td>
<td>100 - 150</td>
<td>50 – 100</td>
</tr>
<tr>
<td>Air consumption, m³/m³ water</td>
<td></td>
<td>0.02 – 0.06</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chemical conditioning</td>
<td>IC</td>
<td>OC + F</td>
<td>OC</td>
<td>IC + F</td>
</tr>
<tr>
<td>Treatment time, minutes</td>
<td>10 - 20</td>
<td>30 - 40</td>
<td>30 - 40</td>
<td>100 - 120</td>
</tr>
<tr>
<td>Sludge volume as % of treated water</td>
<td>0.05 – 0.1</td>
<td>0.3 – 0.4</td>
<td>3 - 5</td>
<td>7 - 10</td>
</tr>
<tr>
<td>Oil removal efficiency, %</td>
<td>99 – 99.5</td>
<td>85 - 95</td>
<td>60 - 80</td>
<td>50 – 70</td>
</tr>
<tr>
<td>SS removal efficiency, %</td>
<td>99 – 99.5</td>
<td>90 - 95</td>
<td>85 - 90</td>
<td>90 - 95</td>
</tr>
</tbody>
</table>
Challenges in O_2 Evolution Anodes

Economical
Stable
Active

O_2 Evolution Anodes

Pt (wire, mesh, plates)
PbO$_2$
Graphite
DSA (TiO$_2$-RuO$_2$; IrO$_2$ with Ta$_2$O$_5$, ZrO$_2$ or CeO$_2$)
DSA (Ti/IrO$_2$-Sb$_2$O$_5$-SnO$_2$)
Electrooxidation

Indirect electrooxidation

- Cl\textsubscript{2} formation
- H\textsubscript{2}O\textsubscript{2} generation
- O\textsubscript{3} generation
- Mediator, Ag2+

Direct oxidation

- OH radicals for complete mineralization
Formation Potential of Typical Chemical Reactants

<table>
<thead>
<tr>
<th>Oxidants</th>
<th>Formation potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{H}_2\text{O}/\cdot\text{OH}$ (hydroxyl radical)</td>
<td>2.80</td>
</tr>
<tr>
<td>O_2/O_3 (ozone)</td>
<td>2.07</td>
</tr>
<tr>
<td>$\text{SO}_4^{2-}/\text{S}_2\text{O}_8^{2-}$ (peroxodisulfate)</td>
<td>2.01</td>
</tr>
<tr>
<td>$\text{MnO}_2/\text{MnO}_4^{2-}$ (permanganate ion)</td>
<td>1.77</td>
</tr>
<tr>
<td>$\text{H}_2\text{O}/\text{H}_2\text{O}_2$ (hydrogen peroxide)</td>
<td>1.77</td>
</tr>
<tr>
<td>$\text{Cl}^-/\text{ClO}_2^-$ (chlorine dioxide)</td>
<td>1.57</td>
</tr>
<tr>
<td>$\text{Ag}^+/\text{Ag}^{2+}$ (silver (II) ion)</td>
<td>1.50</td>
</tr>
<tr>
<td>Cl^-/Cl_2 (chlorine)</td>
<td>1.36</td>
</tr>
<tr>
<td>$\text{Cr}^{3+}/\text{Cr}_2\text{O}_7^{2-}$ (dichromate)</td>
<td>1.23</td>
</tr>
<tr>
<td>$\text{H}_2\text{O}/\text{O}_2$ (oxygen)</td>
<td>1.23</td>
</tr>
</tbody>
</table>
Basic Requirements of Electrodes

• Good activity
• High stability
• Low cost
Potential of Oxygen Evolution of Anodes

<table>
<thead>
<tr>
<th>Anode</th>
<th>Value, V</th>
<th>Over-potential, V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>1.3 – 1.6</td>
<td>0.1 – 0.3</td>
</tr>
<tr>
<td>IrO₂</td>
<td>1.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Graphite</td>
<td>1.7</td>
<td>0.5</td>
</tr>
<tr>
<td>PbO₂</td>
<td>1.9</td>
<td>0.7</td>
</tr>
<tr>
<td>SnO₂</td>
<td>1.9</td>
<td>0.7</td>
</tr>
<tr>
<td>Pb-Sn</td>
<td>2.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Ebonex (Ti₄O₇)</td>
<td>2.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Si/BDD</td>
<td>2.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Ti/BDD</td>
<td>2.7 – 2.8</td>
<td>1.5 – 1.6</td>
</tr>
</tbody>
</table>
Analysis of Available Electrodes

- Graphite: unstable, ineffective, cheap
- Pt, IrO$_2$: too expensive, ineffective
- PbO$_2$, SnO$_2$: unstable, easy to make
- B-diamond (BDD), effective, expensive
Oxidation of acetic acid
Oxidation of phenol

![Graph showing the oxidation of phenol with different charge loadings and residual COD values. The graph compares the performance of Ti/BDD and Ti/Sb$_2$O$_5$-SnO$_2$.](image-url)
Oxidation of orange II

COD, mg/L

Charge loading, Ah/L

Ti/Sb₂O₅-SnO₂

Ti/BDD
Reproducibility comparison, 500 mg/l phenol at 100 A/m², 30 °C.
Electrodisinfection

• Generating chlorine electrically

\[2\text{Cl}^- - 2e \rightarrow \text{Cl}_2 \quad \text{(anode)} \]

\[2\text{H}_2\text{O} + 2e \rightarrow \text{H}_2 + 2\text{OH}^- \quad \text{(cathode)} \]

• Generating OH radicals electrically
 (similar to electrooxidation)
Log-kill of bacteriophage MS2 versus time at different currents at salt content 1% NaCl by mass

$N_0 = 10^7 - 10^8$ PFU/mL

$pH = 7.0$

$[\text{NaCl}] = 1\%$
Comparison between the log-kill of bacteriophage MS2 in the EC and PC systems at currents of 0.05 and 0.15 A
Electroreduction

• Direct reduction on the surface of cathode

\[\text{M}^{n+} + n\text{e} \rightarrow \text{M} \quad \text{(cathode)} \]

• Mediated reduction by H\(_2\) generated

\[2\text{H}_2\text{O} + 2\text{e} \rightarrow \text{H}_2 + 2\text{OH}^- \quad \text{(cathode)} \]

• Mediated reduction by Fe\(^{2+}\) generated

\[\text{Fe} - 2\text{e} \rightarrow \text{Fe}^{2+} \quad \text{(anode)} \]
Influent solution

Fe plate

Compressed air

draft tube

EC

EF1 effluent solution

EF2

effluent solution

Anode (oxidation): \[\text{Fe} \leftrightarrow \text{Fe}^{2+} + 2e^- \] (1)

Mediated reduction: \[\text{Cr}^{6+} + 3\text{Fe}^{2+} \leftrightarrow \text{Cr}^{3+} + 3\text{Fe}^{3+} \] (2)

Cathode (reduction): \[2\text{H}_2\text{O} + 2e^- \leftrightarrow \text{H}_2 + 2\text{OH}^- \] (3)

Co-precipitation: \[
\begin{align*}
\text{Cr}^{3+} + 3\text{OH}^- & \leftrightarrow \text{Cr(OH)}_3 \\
\text{Fe}^{3+} + 3\text{OH}^- & \leftrightarrow \text{Fe(OH)}_3 \\
\text{Fe}^{2+} + 2\text{OH}^- & \leftrightarrow \text{Fe(OH)}_2
\end{align*}
\] (4-6)
CONCLUSIONS

• Electrodeposition established

• Electrocoagulation works

• Electrocoagulation & electroflotation works better

• BDD is an excellent anode for electrooxidation

• Electrodisinfection outperforms pump chlorine system

• Electroreduction is finding more application
Acknowledgements

Professor Po Lock Yue
Professor Ping Gao
Professor Chii Shang

Dr. Xueming Chen
Mr. Feng Shen
Mr. Yuan Tian
Dr. Liang Guo
Miss Qian Fang
Mr. Johnston Ralston
Mr. Jiaqi Zheng

Financial Supports from ECF, RGC, DAG are appreciated
Thank you for your attention